
LA-UR-21-25422
Approved for public release; distribution is unlimited.

Title: Searching for Speed With SIMD

Author(s): Mastripolito, Benjamin Philip

Intended for: LANL PCSRI Presentation

Issued: 2021-06-23 (rev.1)

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

16/15/21 16/15/21Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA.

Searching for Speed With
SIMD

Benjamin Mastripolito

June 15th, 2021

LA-UR-21-25422

26/15/21

The Problem

• EOSPAC: interpolation on equation-of-state tables (2D arrays)
• Interpolation requires searching for elements bounding target in an array

1.2 2.3 8.8 25.7 135 250 850

58Search for:

58 ✓

36/15/21

Hunt & Locate

• The old search algorithm in EOSPAC
• Jumps to produce bounds within which to perform binary search
• Uses previous index to start next search

46/15/21

Constraints 🔒

• Data array D much smaller than targets array T, and never changes
• Data array is logarithmically distributed
• Can’t use multithreading L
• Possibility of many search calls

56/15/21

Vectorization ⏩

• Compilers can produce vector (SIMD)
instructions

• SIMD: Single Instruction, Multiple Data
• They do what it sounds like they do

A[1] A[2] A[3]A[0]

Vector width: 256 bits

for (int i = 0; i < 4; i++) {
C[i] = A[i] * B[i];

}

B[1] B[2] B[3]B[0]

C[1] C[2] C[3]C[0]

* * * *

= = = =

66/15/21

Vectorization ⏩

• Compilers can produce vector (SIMD)
instructions

• SIMD: Single Instruction, Multiple Data
• They do what it sounds like they do

0

for (int i = 0; i < 16; i++) {
C[i] = A[i] * B[i];

}

*

=

1 2 3

0 1 2 3

0 1 2 3

4

*
=

5 6 7

4 5 6 7

4 5 6 7

8

*

=

9 1
0

1
1

8 9 1
0

1
1

8 9 1
0

1
1

1
2

*

=

1
3

1
4

1
5

1
2

1
3

1
4

1
5

1
2

1
3

1
4

1
5

A

B

C

76/15/21

Vectorization ⏩ for (int i = 0; i < 256; i++) {
C[i] = A[i] * B[i];

}

Loop can be vectorized

float z = 0.0f;
for (int i = 0; i < 256; i++) {

C[i] = A[i] * B[i] + z;
z = A[i] + B[i];

}

Loop can’t be vectorized – memory dependency
between iterations

• Vectorization is constrained
− NO dependency b/w loop iterations
− NO non-inline function calls

§ (With a few exceptions)
− SOME branching, but it’ll be masked:

both branches are evaluated but the
result from the untaken branch will be
ignored

• Varies significantly by compiler
for (int i = 0; i < 256; i++) {

if (A[i] == 0) {
...

} else {
...

}
}

Loop vectorized but each iteration will be as slow
as the slowest branch

86/15/21

Preventing Masking

• Sometimes masking can result in worse performance due to overhead
• Prevent masking by removing as much branching as possible

int branchless_choice(int cond, int vtrue, int vfalse) {
return vtrue ^ ((vfalse ^ vtrue) & -(!cond));

}

Branching is simulated with bitmask

if (A * B == 3) {
C = 5;

} else {
C = 10;

}

C = branchless_choice(A * B, 5, 10)

00000001

00000000

00000000

cond=true

!

-

00000011vtrue=3

00001010vfalse=5

00001001^

00000000&

00000011vtrue=3

00000011^

=

96/15/21

Preventing Masking

• Sometimes masking can result in worse performance due to overhead
• Prevent masking by removing as much branching as possible

int branchless_choice(int cond, int vtrue, int vfalse) {
return vtrue ^ ((vfalse ^ vtrue) & -(!cond));

}

Branching is simulated with bitmask

if (A * B == 3) {
C = 5;

} else {
C = 10;

}

C = branchless_choice(A * B, 5, 10)

00000000

00000001

11111111

cond=false

!

-

00000011vtrue=3

00001010vfalse=5

00001001^

00001001&

00000011vtrue=3

00001010^

=

106/15/21

Goals 🌟

• Get us an algorithm that can do both:
− Utilize vectorization as much as possible
− Perform well within EOSPAC’s constraints

• Data array (D) doesn’t change! Can we use that to our advantage?

116/15/21

Skiplist Search ⏭

• Create “skiplist” which “skips” over 8 values (size of cache line) of D at a time
• Binary search on skiplist to find bounds

• Linear search through these bounds

126/15/21

SIMD Hunt & Locate

• Modified version of Hunt & Locate with memory dependency removed
• Faster than binary search when target is near beginning of D

136/15/21

Binning-Based Search 🗑

• Bin (hash) values by the floor of their base-N logarithm
• Choose N to fit data into size of H, the hashtable

1.2 2.3 8.8 25.7 135 250 850

100
H[0] = 0

101
H[1] = 3

102
H[2] = 4

D

H
N=10

0 1 2 3 4 5 6

146/15/21

Binning-Based Search 🗑

• Take logN of target, then perform secondary search in that bin
• Can use any search algo for secondary search (we tried linear and binary)

1.2 2.3 8.8 25.7 135 250 850

100
H[0] = 0

101
H[1] = 3

102
H[2] = 4

D

H
N=10

0 1 2 3 4 5 6

175 ⌊log10(175)⌋ = 2

156/15/21

Binning-Based Search 🗑

• Very cool! But how to choose N?
• Like this:

• Now N is just the right size so that the range of values in D is fully contained
within H (however large we choose to make it)

← We want number of powers
of N in D to equal size of H

166/15/21

Faster

• Logarithm function is slow and just plain sucks when vectorizing 👎
• How to get log of x without log10(x)?
...

176/15/21

Faster!

• Logarithm function is slow 👎
• How to get log of x without log10(x)?
• Extract exponent bits from float!

1 0 0 0 1 0 0 10 0 1 1 0 1 0 1 0 1 0 0 0 0 1 1 1 1 1 0 0 0 0 1

137-127 = 10

1450.12123 ≈ 1.416134×210

• But now the smallest N we can use is 2, so is it fast enough to make up for it?

186/15/21

Results

• Searching for 5 mil values in size 110
array

• Only Intel compiler was able to
vectorize L

196/15/21

Results: Masking

• Sometimes results in worse performance
• Compare versions with and without

branching

206/15/21

Results

• Large performance gains from
vectorization

216/15/21

Results

• Exponent hash search does the best
relative to Hunt & Locate

226/15/21

What Does it All Mean?

• Vectorization can be utilized to speed up certain kinds of algorithms
• Compilers are tough to wrangle
• Search time can be improved when constraints are taken into account

236/15/21

That’s all, folks!
Feel free to take this moment to cogitate and ask some questions

